Abhaya K. Datye, Chairperson
Department of Chemical and Biological Engineering
Farris Engineering Center 1330
MSC01 1120
1 University of New Mexico
Albuquerque, NM 87131-0001
(505) 277-5431
* Registered Professional Engineer in New Mexico.
The Department of Chemical and Biological Engineering offers undergraduate and graduate degrees in Chemical Engineering. General department policies on admission and grading, as well as detailed descriptions of the degree programs may be found on the department Undergraduate and Graduate pages.
Courses
CBE 101.
Introduction to Chemical Engineering and Biological Engineering.
(1)
An introduction to the professions of chemical engineering and biological engineering; current research in these fields; career choices; guidance and advice on curricular matters and effective study techniques for chemical and biological engineering students.
{Fall, Spring}
CBE 213.
Laboratory Electronics for Nuclear, Chemical and Biological Engineers.
(3)
(Also offered as NE 213)
Basic DC and AC circuits including capacitors and inductors and their applications in radiation measurement equipment and chemical process parameter measurements. Oscilloscopes, Op Amps, and Sensors and their use in the CBE and NE laboratories.
{Spring}
CBE 251.
Chemical Process Calculations.
(3)
Extensive problem work in material and energy balances for steady state processes. Students will utilize physical properties, chemistry and computer skills to obtain solutions. Detailed examination of case studies demonstrating the fundamentals of process analysis.
Prerequisite: (CHEM 1225 or CHEM 1227) and CHEM 1225L and PHYS 1310.
{Fall}
CBE 253.
Chemical and Biological Engineering Computing.
(3)
Introductory computer solutions to chemical engineering problems using MATLAB and ASPEN. Topics covered will include thermodynamic equations, transport problems, material-energy balances, staged operations, and reaction engineering.
Prerequisite: 251.
{Spring}
CBE 302.
Chemical Engineering Thermodynamics.
(3)
Principles of chemical thermodynamics and their applications to energy conversion, phase and reaction equilibrium and the calculation of thermodynamic properties.
Prerequisite: 251.
{Spring}
CBE 311.
Introduction to Transport Phenomena.
(3)
The mechanisms and the related mathematical analysis of momentum and heat transport in both the molecular and turbulent regimes. Similarities and differences between transport types and the prediction of transport properties.
Prerequisite: 253 and MATH **316.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 312.
Unit Operations.
(3)
A study of the unit operations involved with momentum and heat transfer. Focus will be on the basics of equipment design and how to synthesize a process from the basic units. Includes extensive use of computer techniques and design exercises.
Prerequisite: 311.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 317.
Numerical Methods for Chemical and Biological Engineering.
(3)
MATLAB application of numerical techniques to the solution of chemical engineering problems such as transport phenomena. Included are linear/nonlinear equations; numerical integration/differentiation; regression and interpolation,; ordinary differential equations; optimization.
Prerequisite: 253 and MATH **316.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 318L.
Chemical Engineering Laboratory I : Introduction to Experimentation.
(3)
Integrated lecture and laboratory. Introducing students to experimentation in Chemical Engineering. Topics include laboratory safety, experimental planning, data acquisition, sources of experimental error and uncertainty, introductory statistics, and writing reports and preparing technical presentations.
Prerequisite: 253 and 302.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 319L.
Chemical Engineering Laboratory II.
(1)
Laboratory experiments in fluids and heat transfer. Students will apply concepts of error analysis and use computational fluid dynamics software for interpretation of experimental data.
Prerequisite: 311.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 321.
Mass Transfer.
(3)
Continuation of 311. The mechanisms and the related mathematical analysis of mass transport in both molecular and turbulent regimes. Similarities and differences among mass, momentum and heat transport. Prediction of mass transport properties. Design of separation systems based on mass transfer.
Prerequisite: 253 and 311.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 371.
Introduction to Materials Engineering.
(3)
This course develops an understanding of materials from a molecular viewpoint. The structure, properties, and processing of metals, ceramics, polymers, and nanostructured materials are treated in an integrated fashion. Applications include nanotechnology, and biology.
Prerequisite: 302 and 311 and 317.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 403 / 503.
Heterogeneous Catalysis Seminar.
(2 to a maximum of 20 Δ)
Discussion of current research in heterogeneous catalysis and materials characterization. Students learn to read the literature critically and to present reviews of ongoing research.
Restriction: admitted to School of Engineering.
CBE 404 / 504.
Nanomaterials Seminar.
(2 to a maximum of 20 Δ)
Investigate, evaluate, and discuss current frontier topics in sol-gel synthesis of nanostructured materials through a series of presentations.
Restriction: admitted to School of Engineering.
CBE 406 / 506.
Bioengineering Seminar.
(2 to a maximum of 20 Δ)
Emerging bioengineering concepts and applications with emphasis on materials and device technologies.
Restriction: admitted to School of Engineering.
CBE 412 / 512.
Characterization Methods for Nanostructures.
(3)
(Also offered as CHEM 469 / 569; NSMS 512)
Nanostructure characterization methods. Examine principles underlying techniques and limitations, and how to interpret data from each method: electron beam, scanning probe, x-ray, neutron scattering, optical and near field optical. Lab demonstrations and projects provide experience.
{Fall}
CBE 417 / 517.
Applied Biology for Biomedical Engineers.
(3)
(Also offered as BME 517)
Emphasis on engineering principles and analysis of: (i) the cell as a complete system, including cellular subsystems, structures and functions; and (ii) select higher order systems of human physiology.
Prerequisite: 361 and BIOL 2110C.
Restriction: permission of instructor.
CBE 418L.
Chemical Engineering Laboratory III.
(1)
Laboratory experiments in mass transfer and unit operations. Students will plan experiments to study the operation of process equipment such as heat exchanger, distillation columns, etc. Fundamental experiments on mass transfer are also included.
Prerequisite: 312 and 321.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 419L.
Chemical Engineering Laboratory IV.
(1)
Laboratory experiments in kinetics and process control. Students will also do an in-depth project in their chosen chemical engineering concentration.
Prerequisite: 454 and **461.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 447 / 547.
Biomedical Engineering Research Practices.
(3)
(Also offered as BME 547)
Students will develop research, presentation, and scientific writing skills for theses, proposals, invention disclosures and journal articles. The course includes oral presentations, case studies of research ethics, technology transfer and manuscript preparation.
Restriction: permission of instructor.
{Fall}
CBE 451.
Senior Seminar.
(1)
Senior year. Reports on selected topics and surveys; presentation and discussion of papers from current technical journals, and topics of interest to chemical and biological engineers.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 454.
Process Dynamics and Control.
(3)
Design and analysis of feedback control systems in chemical and biological systems. Topics include formulation of dynamic models, time and Laplace domain analysis of open- and closed-loop systems, design of single variable and multivariable controllers.
Prerequisite: 317.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE **461.
Chemical Reactor Engineering.
(3)
Elementary principles of chemical reactor design and operation utilizing the kinetics of homogeneous and heterogeneous-catalytic reactions.
Prerequisite: 311 and 317.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 472 / 572.
Biomaterials Engineering.
(3)
(Also offered as BME 572)
Introduction to biomaterials currently in use, including commercial and research applications. Includes an understanding of a material's properties, biological responses to the materials, clinical context of their use, manufacturing processes, and regulatory issues.
Restriction: permission of instructor or BME graduate advisor.
{Fall, odd years}
CBE 477 / 577.
Electrochemical Engineering.
(3)
Introduction of the principles of electrochemistry and their applications in materials characterization, corrosion, electro-plating and etching. The course builds on electrochemical kinetics and discusses the design of sensors, batteries and fuel cells.
Prerequisite: 302.
Restriction: admitted to School of Engineering.
{Fall, on demand}
CBE 479 / 579.
Tissue Engineering.
(3)
(Also offered as BME 579)
A review of the current strategies involved in the design of engineered tissues and organs. The principles underlying the implementation of selected cells, biomaterial scaffolds, soluble regulators, and culture conditions will be addressed.
Restriction: permission of instructor.
{Spring, odd years}
CBE 486 / 586.
Introduction to Statistics and Design of Experiments.
(3)
This course will introduce computational tools and statistical methods important for chemical engineering practice, including fundamental concepts of statistics, numerical statistical analysis applications and methods for the design of experiments.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 491.
Undergraduate Research.
(1-3, no limit Δ)
Advanced studies in various areas of chemical and biological engineering.
Restriction: permission of instructor.
{Summer, Fall, Spring}
CBE 493L.
Chemical Engineering Design.
(3)
Principles and practices of chemical engineering design, including process flow sheets, equipment design and specification, process modeling and simulation, economic analysis, and hazard analysis. In-depth design of at least one commercial-scale chemical process.
Prerequisite: 253 and 302 and 312 and 321.
Restriction: admitted to B.S.Ch.E. program.
{Fall}
CBE 494L.
Advanced Chemical Engineering Design.
(3)
Continued practice in creative chemical engineering design, including safety, health and environmental issues. Detailed project on a major open-ended process design or research problem.
Prerequisite: 493L.
Restriction: admitted to B.S.Ch.E. program.
{Spring}
CBE 495–496.
Chemical and Biological Engineering Honors Problems I and II.
(1-6 to a maximum of 6 Δ; 1-6 to a maximum of 6 Δ)
Senior thesis for students seeking departmental honors.
Restriction: admitted to B.S.Ch.E. program.
{Summer, Fall, Spring}
CBE 499.
Selected Topics.
(1-3, no limit Δ)
A course which permits various faculty members to present detailed examinations of developing sciences and technologies in a classroom setting.
Restriction: admitted to School of Engineering.
{Offered upon demand}
CBE 501.
Chemical and Biological Engineering Seminar.
(1, no limit Δ)
Colloquia, special lectures and individual study in areas of current research. A maximum of 3 credits can be applied toward degree.
{Fall, Spring}
CBE 502.
Chemical and Biological Engineering Research Practices.
(3, no limit Δ)
Students will work on developing research proposals for their masters or doctoral degree. The course will involve oral presentations of proposals and journal article critiques.
{Fall}
CBE 503 / 403.
Heterogeneous Catalysis Seminar.
(2 to a maximum of 20 Δ)
Discussion of current research in heterogeneous catalysis and materials characterization. Students learn to read the literature critically and to present reviews of ongoing research.
CBE 504 / 404.
Nanomaterials Seminar.
(2 to a maximum of 20 Δ)
Investigate, evaluate, and discuss current frontier topics in sol-gel synthesis of nanostructured materials through a series of presentations.
CBE 506 / 406.
Bioengineering Seminar.
(2 to a maximum of 20 Δ)
Emerging bioengineering concepts and applications with emphasis on materials and device technologies.
CBE 512 / 412.
Characterization Methods for Nanostructures.
(3)
(Also offered as CHEM 569 / 469; NSMS 512)
Nanostructure characterization methods. Examine principles underlying techniques and limitations, and how to interpret data from each method: electron beam, scanning probe, x-ray, neutron scattering, optical and near field optical. Lab demonstrations and projects provide experience.
CBE 515.
Special Topics.
(1-3, no limit Δ)
CBE 517 / 417.
Applied Biology for Biomedical Engineers.
(3)
(Also offered as BME 517)
Emphasis on engineering principles and analysis of: (i) the cell as a complete system, including cellular subsystems, structures and functions; and (ii) select higher order systems of human physiology.
Restriction: permission of instructor.
CBE 521.
Advanced Transport Phenomena I.
(3)
Equations of change applied to momentum, energy and mass transfer. Analogies between these phenomena and their limitations. Transport dependent on two independent variables, unsteady state problems.
{Fall}
CBE 525.
Methods of Analysis in Nuclear, Chemical and Biological Engineering.
(3)
(Also offered as NE 525)
Mathematical methods used in chemical and nuclear engineering; partial differential equations of series solutions transport processes, integral transforms. Applications in heat transfer, fluid mechanics and neutron diffusion. Separation of variables eigen function expansion.
{Fall}
CBE 530.
Surface and Interfacial Phenomena.
(3)
Introduces various intermolecular interactions in solutions and in colloidal systems; colloidal systems; surfaces; interparticle interactions; polymer-coated surfaces; polymers in solution, viscosity in thin liquid films; surfactant self-assembly; and surfactants in surfaces.
CBE 542.
Advanced Chemical Engineering Thermodynamics.
(3)
Advanced thermodynamics with reference to its application in chemical engineering.
{Spring}
CBE 547 / 447.
Biomedical Engineering Research Practices.
(3)
(Also offered as BME 547)
Students will develop research, presentation, and scientific writing skills for theses, proposals, invention disclosures and journal articles. The course includes oral presentations, case studies of research ethics, technology transfer and manuscript preparation.
Restriction: permission of instructor.
{Fall}
CBE 551–552.
Problems.
(1-3, no limit Δ; 1-3)
Advanced study, design or research either on an individual or small group basis with an instructor. Recent topics have included convective diffusion, reactor safety, inertial confinement fusion and nuclear waste management.
CBE 561.
Kinetics of Chemical Processes.
(3)
Rate equations for simple and complex chemical processes, both homogeneous and heterogeneous. Experimental methods and interpretation of kinetic data for use in chemical reactor design and analysis. Applications to complex industrial problems.
{Spring}
CBE 572 / 472.
Biomaterials Engineering.
(3)
(Also offered as BME 572)
Introduction to biomaterials currently in use, including commercial and research applications. Includes an understanding of a material's properties, biological responses to the materials, clinical context of their use, manufacturing processes, and regulatory issues.
Restriction: permission of instructor or BME graduate advisor.
{Fall, odd years}
CBE 575.
Selected Topics in Material Science.
(1-3, no limit Δ)
May be counted an unlimited number of times toward degree, with departmental approval, since content varies. Credit is determined based on the content of the course.
{Offered upon demand}
CBE 576.
Selected Topics in Aerosol Science.
(3 to a maximum of 6 Δ)
Analysis of the motion of both charged and neutral aerosol particles; molecular and convective diffusion, particle size and classification, coagulation, precipitation and particle capture, current aerosol research and instrumentation.
{Offered upon demand}
CBE 577 / 477.
Electrochemical Engineering.
(3)
Introduction of the principles of electrochemistry and their applications in materials characterization, corrosion, electro-plating and etching. The course builds on electrochemical kinetics and discusses the design of sensors, batteries and fuel cells.
{Offered on demand}
CBE 579 / 479.
Tissue Engineering.
(3)
(Also offered as BME 579)
A review of the current strategies involved in the design of engineered tissues and organs. The principles underlying the implementation of selected cells, biomaterial scaffolds, soluble regulators, and culture conditions will be addressed.
Restriction: permission of instructor.
{Spring, on demand}
CBE 586 / 486.
Introduction to Statistics and Design of Experiments.
(3)
This course will introduce computational tools and statistical methods important for chemical engineering practice, including fundamental concepts of statistics, numerical statistical analysis applications and methods for the design of experiments.
{Fall}
CBE 599.
Master's Thesis.
(1-6, no limit Δ)
Offered on a CR/NC basis only.
CBE 699.
Dissertation.
(3-12, no limit Δ)
See Graduate Programs section for total credit requirements.
Offered on a CR/NC basis only.